
Quantum Mechanics I
Week 12 (Solutions)

Spring Semester 2025

1 The Action of the Angular Momentum Operator in
Position Representation

Find the action of the z-component of the angular momentum on a ket state |α⟩ in the
position representation, i.e.

⟨x′|Lz|α⟩ = −iℏ ∂

∂ϕ
⟨x′|α⟩. (1.1)

Hint: Use the standard spherical-coordinate transformation

x′ = r cosϕ sin θ, y′ = r sinϕ sin θ, z′ = r cos θ.

We are interested in computing the matrix element ⟨x′|Lz|α⟩. The angular momentum is
defined as L = r× p and its components are given by Li = ϵijkrjpk. The z-component is
given by Lz = xpy − ypz. Thus, we have:

⟨x′|L̂z|α⟩ = ⟨x′|(xpy − ypz)|α⟩

= x′
[
−iℏ ∂

∂y′
⟨x′|α⟩

]
− y′

[
−iℏ ∂

∂x′
⟨x′|α⟩

]
.

To proceed, we first express the derivatives in spherical coordinates using the chain rule:
∂

∂x′
=

∂r

∂x′
∂

∂r
+
∂θ

∂x′
∂

∂θ
+
∂ϕ

∂x′
∂

∂ϕ
,

∂

∂y′
=

∂r

∂y′
∂

∂r
+
∂θ

∂y′
∂

∂θ
+
∂ϕ

∂y′
∂

∂ϕ
. (1.2)

Using the hint provided in the instruction, we can determine the derivatives of the
spherical coordinates with respect to the cartesian ones. We thus find:

⟨x′|L̂z|α⟩ = −iℏ
[
r cosϕ sin θ

(
sinϕ sin θ

∂

∂r

)
− r sinϕ sin θ

(
cosϕ sin θ

∂

∂r

)]
⟨x′|α⟩

− iℏ
[
r cosϕ sin θ

(
−sinϕ cos θ

r

∂

∂θ

)
− r sinϕ sin θ

(
−cosϕ cos θ

r

∂

∂θ

)]
⟨x′|α⟩

− iℏ
[
r cosϕ sin θ

(
cosϕ csc θ

r

∂

∂ϕ

)
− r sinϕ sin θ

(
−sinϕ csc θ

r

∂

∂ϕ

)]
⟨x′|α⟩

= −iℏ sin θ csc θ
∂

∂ϕ
⟨x′|α⟩

= −iℏ ∂

∂ϕ
⟨x′|α⟩,

and thus yield the final result.
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2 Rotations about the z-axis
Let L̂ = (L̂x, L̂y, L̂z) be the angular-momentum operator of a particle. In the position
representation, written in spherical coordinates (r, θ, ϕ), we have

L̂z = −iℏ ∂

∂ϕ
. (2.1)

Let
D̂z(α) = e−iαL̂z/ℏ (2.2)

be the rotation operator for an angle α about the z-axis, acting in the Hilbert space of
the particle.

(a) Let ψ′(r, θ, ϕ) = D̂z(α)ψ(r, θ, ϕ) be the wave-function obtained by applying D̂z(α)
to an arbitrary state ψ(r, θ, ϕ). Show that

ψ′(r, θ, ϕ) = ψ
(
r, θ, ϕ− α

)
. (2.3)

where the prime corresponds to the rotated state.

We expand the exponential of the rotation operator in its Taylor series,

ψ′(r, θ, ϕ) = Dz(α)ψ(r, θ, ϕ)

= e−iα L̂z/ℏψ(r, θ, ϕ)

=
∞∑
n=0

1

n!

(
−iα

ℏ

)n

L̂n
z ψ(r, θ, ϕ)

=
∞∑
n=0

1

n!
(−α)n∂ n

ϕ ψ(r, θ, ϕ)

= ψ
(
r, θ, ϕ− α

)
,

where in the last step we used the Taylor expansion of ψ(r, θ, ϕ − α) with respect
to α = 0.

(b) Express ψ′(x, y, z) as a function of ψ(x, y, z) and α.

We explicitly write the dependence of (r, θ, ϕ) as a function of (x, y, z):

ψ̃
(
x(r, θ, ϕ), y(r, θ, ϕ), z(r, θ, ϕ)

)
= ψ

(
x(r, θ, ϕ− α), y(r, θ, ϕ− α), z(r, θ, ϕ− α)

)
= ψ

(
r sin θ cos(ϕ− α), r sin θ sin(ϕ− α), r cos θ

)
= ψ

(
r sin θ cosϕ cosα + r sin θ sinϕ sinα, r sin θ sinϕ cosα− r sin θ cosϕ sinα, r cos θ

)
= ψ

(
x cosα + y sinα, y cosα− x sinα, z

)
.

We have used the trigonometric identity cos(α− β) = cosα cos β + sinα sin β and
sin(α− β) = sinα cos β − cosα sin β. We remark that the result corresponds to the
function ψ at coordinates rotated by an angle −α around the z-axis.
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(c) Consider the three states described by the wave functions

ψx(r) = x f(r), ψy(r) = y f(r), ψz(r) = z f(r), (2.4)

where f(r) vanishes for r → +∞ so that the states are normalisable. These three
states are mutually orthogonal and thus form a basis of a subspace H1 of dimension
3 of the Hilbert space H. Show that each ψj(r) is an eigenstate of L̂j (j = x, y, z)

and calculate the corresponding eigenvalues. Hint: You may use [L̂j, r̂k] = iℏ ϵjklr̂l.

We will use the commutation relation for angular momentum and position as
provided in the instruction. For the x compoments of angular momentum and
position, the commutator is zero, i.e. [L̂x, x̂] = 0. We can use this, together with
the property of the position operator in the position representation, in the
following way:

L̂xψl(r) = Lxx f(r)

= L̂xx̂ f(r)

= x̂L̂xf(r)

= xL̂xf(r)

= x(ŷp̂z − ẑp̂y)f(r)

= −iℏx(y∂z − z∂y)f(r)

= −iℏx
(
y
∂r

∂z
− z

∂r

∂y

)∂f(r)
∂r

= −iℏx
(yz
r

− zy

r

)∂f(r)
∂r

= 0.

and we have used the fact that r =
√
x2 + y2 + z2. The function ψx(r) is therefore

an eigenfunction of the operator Lx with eigenvalue zero. Analogously, we calculate
L̂yψy(r) and L̂zψz(r) and find again zero-eigenvalues, respectively.

(d) Using the result of part (b), show that H1 is invariant under the action of D̂z(α).
Express the matrix associated with D̂z(α) in the basis {ψx, ψy, ψz}.
We can use the general result obtained from part (a). For ψx(r), we obtain:

D̂z(α)ψx(r) = D̂z(α)x f(r)

= (x cosα + y sinα) f(r)

= ψx(r) cosα + ψy(r) sinα.

Likewise, for ψy(r)

D̂z(α)ψy(r) = D̂z(α) y f(r)

= (y cosα− x sinα) f(r)

= ψy(r) cosα− ψx(r) sinα,

and ψz(r):
D̂z(α)ψz(r) = D̂z(α) z f(r) = ψz(r). (2.5)
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We see that the application of D̂z(α) to the three functions always gives linear
combinations of the same three functions, which shows that the subspace H1 is
indeed invariant under the action of D̂z(α). The expressions we have just obtained
also define the matrix form of D̂z(α):

D̂z(α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 . (2.6)

3 Angular Momenta and Uncertainty
The commutator relations for the angular momenta

[Li, Lj] = iℏεijkLk (3.1)

imply an important set of uncertainty relations among the angular momenta, namely:

∆Lx ∆Ly ≥ ℏ
2
|⟨L̂z⟩|, ∆Ly ∆Lz ≥ ℏ

2
|⟨L̂x⟩|, ∆Lz ∆Lx ≥ ℏ

2
|⟨L̂y⟩|. (3.2)

Now consider a particle in a normalized eigenstate of L̂2 and L̂z.

(a) Show that in this case the expectation values of the x and y components of the
angular momentum are zero, i.e. ⟨Lx⟩ = ⟨Ly⟩ = 0.

We use the ladder operators L± to show this. The x and y components can be
expressed in terms of ladder operators:

Lx =
1

2

[
L+ + L−

]
, Ly =

1

2i

[
L+ − L−

]
. (3.3)

First, for the x component, we have:

⟨Lx⟩ =
1

2

[
⟨l,m|L+ |l,m⟩+ ⟨l,m|L− |l,m⟩]

∼ ⟨l,m|l,m+ 1⟩+ ⟨l,m|l,m− 1⟩
= 0.

due to the orthogonality condition of the eigenstates |l,m⟩. Similarly, for the y
component, we have:

⟨Ly⟩ =
1

2i

[
⟨l,m|L+ |l,m⟩ − ⟨l,m|L− |l,m⟩]

∼ ⟨l,m|l,m+ 1⟩ − ⟨l,m|l,m− 1⟩
= 0,

and we used again the orthogonality condition of |l,m⟩.

Page 4 of 9



(b) Show that

⟨L2
y⟩ = ⟨L2

x⟩ =
ℏ2

2

[
l(l + 1)−m2

]
. (3.4)

We express the operator L̂2
x as

L̂2
x =

1

2
(L̂+ + L̂−)(L̂+ + L̂−) =

1

4
(L̂2

+ + L̂−L̂+ + L̂+L̂− + L̂2
−). (3.5)

The first and last terms are of no consequence because when we “sandwich” them
between |l,m⟩ to find the expectation value we get zero due to the orthonormality
of |l,m⟩. Thus, we are left with

⟨l,m|L2
x|l,m⟩ = 1

4

[
⟨l,m|L−L+ |l,m⟩+ ⟨l,m|L+L− |l,m⟩]. (3.6)

We can deal with what is left by doing a little commutator algebra:

L̂±L̂∓ = (L̂x ± iL̂y)(L̂x ∓ iL̂y)

= L̂2
x + L̂2

y ± iL̂yL̂x ∓ iL̂xL̂y

= L̂2 − L̂2
z ± i[L̂x, L̂y]

= L̂2 − L̂2
z ± ℏL̂z,

where in the last equality we used the fact that [L̂x, L̂y] = iℏL̂z. Thus, we have:

⟨l,m|L±L∓|l,m⟩ = ℏ2l(l + 1)− ℏ2m2 ± ℏ2m. (3.7)

Putting everything together, we get

⟨L̂2
x⟩ =

ℏ2

2
[l(l + 1)−m2]. (3.8)

By a very similar treatment, we can also compute ⟨L̂2
y⟩ and verify that ⟨L̂2

x⟩ = ⟨L̂2
y⟩.

(c) Using your results, verify the first uncertainty relation above. Can the uncertainty
in any two components of L⃗ ever vanish simultaneously?

Since ⟨L̂x⟩ = 0, we have

∆Lx =

√
⟨L̂2

x⟩ − ⟨L̂x⟩2 =
√

⟨L̂2
x⟩ =

ℏ√
2

√
l(l + 1)−m2. (3.9)

and similarly for ∆Ly. The left-hand side of the proposed uncertainty relation thus
reads

∆Lx∆Ly =
ℏ2

2

[
l(l + 1)−m2

]
. (3.10)

For a fixed l, this quantity is minimized when m is as large as possible, i.e. when
m = l. In such a situation we obtain ∆Lx∆Ly = lℏ2/2. As for the right-hand side,
we have

ℏ
2
⟨L̂z⟩ =

mℏ2

2
. (3.11)
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This side is maximized precisely when the other side is minimized (m = l), giving
ℏ
2
⟨L̂z⟩ = lℏ2/2. In that case the two sides are equal; for all other cases (m < l) the

left-hand side is greater. We can therefore conclude

∆Lx ∆Ly ≥ ℏ
2
⟨L̂z⟩. (3.12)

It is possible for all components of angular momentum to vanish simultaneously. If a
particle is in an eigenstate with l = m = 0, then from the relationships proved above
we have ⟨L̂2

x⟩ = ⟨L̂2
y⟩ = ⟨L̂2

z⟩ = 0 as well as ⟨L̂x⟩ = ⟨L̂y⟩ = ⟨L̂z⟩ = 0; consequently
∆Lx = ∆Ly = ∆Lz = 0.

4 The Quantum Rigid Rotator
A. Consider a spherically symmetric rigid rotor with moment of inertia Ix = Iy = Iz = I.
For example, it might help to imagine a person curled up into a compact and uniform
sphere and set spinning. Classically, its energy is given by,

E =
L2

2I
. (4.1)

(a) What are the energy eigenstates and eigenvalues for the quantum analog?

The Hamiltonian of the system is simply

Ĥ =
L̂2

2I
, (4.2)

and clearly commutes with both L2 and Lz, and thus its eigenstates are the spherical
harmonics Ylm, since

L̂2Ylm = ℏ2l(l + 1)Ylm. (4.3)

The energy eigenvalues of the quantum rigid rotator are obtained by applying the
Hamiltonian on the eigenstates:

Ĥ Ylm =
L̂2

2I
Ylm =

ℏ2l(l + 1)

2I
Ylm (4.4)

and we identify:

El =
ℏ2l(l + 1)

2I
. (4.5)

(b) What is the degeneracy of the nth energy eigenvalue? (Degeneracy in quantum
mechanics refers to different quantum states having the same energy eigenvalue).

The energy eigenvalues above are labeled only by the total angular momentum
quantum number l, and not on the quantum number corresponding to the
z-component of the angular momentum. This is the case for all spherically
symmetric systems. Now, we recall from the lecture that for a given l the quantum
number m runs from +l to −l, so every energy eigenvalue is 2l + 1 degenerate.
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B. Let us now imagine that the rotator is stretched a bit such that its moment of inertia in
the z-direction becomes Iz = (1+ ϵ)I, with the other two moments remaining unchanged.

(a) What are the new energy eigenstates and eigenvalues?
In this case, the Hamiltonian becomes

Ĥ =
L̂2
x + L̂2

y

2I
+

L̂2
z

2I(1 + ϵ)
. (4.6)

Using the fact that L2
x + L2

y = L2 − L2
z, we find:

Ĥ =
L̂2 − L̂2

z

2I
+

L̂2
z

2I(1 + ϵ)
=
L̂2

2I
− ϵ

1 + ϵ

L̂2
z

2I
. (4.7)

The spherical harmonics Ylm are simultaneous eigenfunctions of both L̂2 and Lz, so
the energy eigenfunctions of the above Hamiltonian are again the Ylm. Following a
similar procedure as in part (a), we find the energies of this rotator as:

Elm =
ℏ2l(l + 1)

2I
− ϵ

1 + ϵ

ℏ2m2

2I
. (4.8)

(b) Sketch the spectrum of energy eigenvalues as a function of ϵ. For what sign of ϵ do
the energy eigenvalues get closer together? Intuitively, why?
In Figure 1, we plot the energies in a dimensionless form,

Ẽl,m(ϵ) = l(l + 1)− ϵ

1 + ϵ
m2, (4.9)

for l = 0, 1, 2.
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0
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,m

= 0, m = 0
= 1, m = 0
= 1, m = ± 1

= 2, m = 0
= 2, m = ± 1
= 2, m = ± 2

Figure 1: The (dimensionless) energies of the rotator as a function of the parameter ϵ for
l = 0, 1, 2.
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For m = 0, there is no dependence on ϵ since the second term in the RHS of the
above equation is zero. Let us analyze the spacings between the energy eigenvalues.
The difference between two energy eigenstates El m and El′m′ is

El m − El′m′ =
ℏ2
[
l′(l′ + 1)− l(l + 1)

]
2I

+
ϵ

1 + ϵ

ℏ2
(
m2 −m′2)
2I

. (4.10)

The first fraction on the right-hand side is a constant and therefore does not affect
the tend of the energy differences; the absolute value of the second fraction shows
how close two energies can get, since it depends on ϵ. We always assume that
m2>m′2 (if not, simply exchange El m ↔ El′m′), so the important term remaining
is

ϵ

1 + ϵ
. If ϵ ≥ 0 then

∣∣ ϵ

1 + ϵ

∣∣ ≤ 1
2
, but if ϵ → −1+ then

∣∣ ϵ

1 + ϵ

∣∣ → ∞; thus, in the
former case ϵ ≥ 0 the two energies are closer.

Classically this means that for a given Lz the moment of inertia in the z-direction
Iz = (1 + ϵ)I increases, the associated rotational energy decreases.

(c) What is the degeneracy of the nth energy eigenvalue? Is the degeneracy partially or
fully lifted?

From Eq. (4.8), we see that, for a given l, the ±m eigenfunctions share the same
eigenvalue, so the degeneracy is only partially lifted. This is because the system
energy is still invariant under Lz → −Lz, i.e. the rigid rotator starts to spin in
the opposite direction but with the same angular-momentum magnitude. The two
opposite rotation directions correspond to +m and −m.

(d) Now add a magnetic field B = Bẑ. Does this term lift the degeneracy?

We add an additional term to the Hamiltonian of the form Ĥ = −B · µ̂ where
µ̂ = q

2m
L̂. Thus, the overall Hamiltonian is:

Ĥ =
L̂2

2I
− ϵ

1 + ϵ

L̂2
z

2I
+

q

2m
B · L̂. (4.11)

The magnetic field is oriented along the z-axis and thus the Hamiltonian reduces
to:

Ĥ =
L̂2

2I
− ϵ

1 + ϵ

L̂2
z

2I
+

q

2m
BzL̂z. (4.12)

This Hamiltonian commutes with both L2 and Lz, and thus its eigenstates are the
usual |l,m⟩ (or the spherical harmonics in position representation. The energies are
thus readily obtained:

El,m(ϵ) =
ℏ2l(l + 1)

2I
− ϵ

1 + ϵ

ℏ2m2

2I
+

q

2m
Bzℏm, (4.13)

which can be re-written in the following dimensionless form:

Ẽl,m(ϵ) = l(l + 1)− ϵ

1 + ϵ
m2 + Am, A =

qBz2I

2mℏ
(4.14)
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where A is a dimensionless constant and is directly proportional to the magnitude
of the magnetic field. This term clearly breaks the symmetry Lz → −Lz, and thus
degeneracy is lifted. In Figure 2, we demonstrate the breaking of the degeneracy
for ±m when B ̸= 0.
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(a) l = 1,m = ±1
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(b) l = 2,m = ±1
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(c) l = 2,m = ±2

Figure 2: The energies of the rotator as a function of the parameter ϵ for a non-zero
magnetic field.
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